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Abstract: In this paper, a path planning algorithm for smooth obstacle avoidance of mobile
robots is presented and discussed. The idea is based on B-splines, which are trajectories defined
by a linear combination of basis functions weighted by constants called control points. Since
the overall curve depends locally only on the position of a limited set of control points, B-
splines are ideal tools for generating online reference trajectories able to react to local changes
of the environment (e.g. mobile or spawning obstacles). The via-points of the reference B-spline
are treated as dynamic agents with customized dynamic properties. These agents interact with
each other and with the environment in such a way to generate the correct reference for the
B-spline generator and thus for the robot. The high flexibility and the low computational burden
of the proposed algorithm allow to develop applications in partially unknown or dynamically
changing environments since a local modification of the trajectory does not require an entire
re-computation. Experimental results performed with a KUKA Youboot mobile robot within a

ROS based set-up are reported.
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1. INTRODUCTION

The motion problem, consisting in steering a robotic sys-
tem from a given initial configuration to a desired final
configuration while avoiding obstacles, has been coped in
a number of different ways. However, it is worth notic-
ing that two main philosophies exist: on the one side,
the motion problem is considered as a planning problem,
aiming at computing a collision-free path between two
configurations, which is solved before the motion starts.
On the other hand the motion problem is often solved
according to a reactive paradigm in which, while the robot
progresses towards the desired goal, the sequence of motion
controls is modified in order to avoid the obstacles detected
by the sensors. This approach is clearly performed at ex-
ecution time. The former category includes sample-based
planners Siciliano et al. (2010) or combinatorial roadmaps
Yahja et al. (2000), Kucuk (2016) able to find the optimal
geometric path, if any exists, guaranteeing the feasibility
of the motion at the cost of a high computational burden
due to online validation. In the latter group, artificial
potential fields represent the most common approach since
they allow to achieve a fast and reactive response to a
dynamically changing environment Arkin (1989), Khatib
(1986), Slack (1993); however, since the motion of the
robot is determined by descending the gradient of the
potential field generated by the target and the obstacles,
it is possible that the robot stacks into a local minimum
Koren and Borenstein (1991).

Attempts of mixing the two motion control philosophies
are also present in the literature. In Sgorbissa and Zaccaria
(2012) a reactive component of the algorithm can modify
the pre-computed path online in order to take care of
dynamic changes of the environment. Masone et al. (2012)
introduces a telemanipulation-based technique that allows
a human operator to interact with the preplanned trajec-
tory by modifying online some geometric properties of a
desired cyclic path. The proposed work exploits the same
idea since it aims at finding a bridge between motion plan-
ning and reactive behaviour. The key point is represented
by the use of spline curves in the so-called B-form, whose
geometric elements; i.e. the control points, are defined as
virtual agents able to interact with each other and with the
environment, populated by obstacles modelled as potential
fields, in a simple and efficient manner that preserves
stability and avoids local minima stacking situations. Note
that the initial position of the control points/agents can
be determined offline with a standard planning algorithm,
based for instance on optimization procedures for obstacle
avoidance Sprunk et al. (2012), Kolter and Ng (2009),
Stoican et al. (2016).

The paper is organized as follows. In Sec. 2 the properties
of B-spline curves are explained. Then in Sec. 3 the
multiagent framework and the hypothesis considered are
illustrated. In Sec. 4 the algorithm is described and its
advantages are analysed. In Sec. 5 the experimental set-
up description and the results are reported.
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Fig. 1. Structure of the discrete-time filter for B-spline trajectories planning.

2. B-SPLINE CURVES

The basic idea of this paper is to modify the trajectory
tracked by the robot in runtime by acting on the param-
eters defining it. To this end the use of spline trajectories
in the so called B-form is the ideal solution. B-spline curve
are defined as

n—1

q(t) = > pr BL(H),
k=0

to <t <tp (1)

where the parameters py are control points that roughly
define the geometrical shape of the trajectory, while B,‘j(t)
are the so-called B-spline basis functions of degree d,
which determine how the curve is followed since they
contain the temporal information. The smoothness of the
curve depends on the order d of the basis functions B (t)
which are scalar functions of class C¢~! defined over a
vector of time-instants [to,t1,...,tn—2,t,—1], known as
knots vector. A noteworthy property of basis functions is
that B{(t) is zero everywhere except in the time interval
[tk,tk+d+1]As a consequence, the k-th control point py
influences the B-spline trajectory only in this temporal
interval. This means that a variation on a point causes
only a local modification of the whole curve, see Fig. 3. As
already mentioned, a B-spline of order d > 1 does not cross
the control points px and in order to define a trajectory
passing though a given set of n points ¢ it is necessary to
impose some interpolation conditions at the desired time-
instants t;, i.c.

q(ti) = qi. (2)
These conditions lead to a linear system whose solution
provides the value of the control points px, k =0, ..., n—1.

For more details refer to Biagiotti and Melchiorri (2008).

All the properties above mentioned remain valid if uniform
B-splines are considered, i.e. B-splines characterized by an
equally-spaced by T distribution of the time knots

(b)
Fig. 2. 2D B-spline curves: linear (a) and cubic (b).

Fig. 3. Local modification of a B-spline curve due to the
change of position of a control point.

n—1

qu(t) =Y pe BY(t — kT),
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In Biagiotti and Melchiorri (2010) it is shown that in this
case the trajectory ¢, (t) can be efficiently generated by
means of a chain of d dynamic filters defined as

0<t<(n—1T. (3)
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and by a zero-order hold Hy(s) fed by a train of impulses of
amplitude pg. If the B-spline function must be evaluated
at discrete-time instants, it is possible to directly define
a filter in the discrete-time domain by discretizing the
continuous-time filters (4). In this way, the trajectory
generator of Fig. 1 is obtained, where N = T/Ty (see
Biagiotti and Melchiorri (2010) for details). Obviously the
scheme of Fig. 1 produces scalar B-splines. However, for
generating vectorial B-splines, that is splines defined in a
multi-dimensional space, it is sufficient to consider a chain
of filters for each component of the control points, which
in this case are vectors.

Note that the use of the digital filter for B-spline gen-
eration offers the following advantages (see Biagiotti and
Melchiorri (2013)):

e a new value of the curve is provided at each sample
time of the control loop;

e the continuity of the output curve is always guaran-
teed even if the control points position is modified;

e the computational burden is extremely low and the
implementation process rather simple, since d FIR
filters, whose input is kept constant to the value of
the control points for a duration of 7' seconds, are
sufficient for computing the trajectory.

M(s) =



Fig. 4. A detail of all the forces acting on agent 1.

3. MULTIAGENT FRAMEWORK AND
ENVIRONMENT CHARACTERIZATION

The aim of the proposed algorithm is to control the motion
of a mobile robot by providing a reference trajectory which
is aware and reactive to the environment and its changes.
The peculiarities of B-spline curves mentioned in section 2
make them a very efficient tool for achieving the required
objective. These trajectories are in fact suitable set point
signals for the control layer of the robot because of their
smoothness (depending on the degree d of the spline) and
their property of global curvature minimization. These
aspects avoid automatically abrupt variations in the com-
puted path and thus harsh torque profiles at a joint level.
Since a position change of the control points causes only
a local modification of the overall trajectory, each of them
can be treated as a single dynamic agent interacting with
the environment and the other agents, leading to a multi-
agent framework. The steady state position of the agents
will univocally define the trajectory to be routed. In the
following a 2-D environment (xy plane) within a planar
motion contest is considered but extension to the 3-D case
is straightforward.

3.1 Characterization of the Agents

An ordered set of n virtual agents representing the via-
points of the B-spline to be interpolated are initially
defined. They are modelled as point-like masses with mass
mg, 1 = 1,..,n. Each agent i is recursively placed along
the line starting at the beginning of the path and directed
toward the target at a fixed distance §, from the previous
agent. Agent i is connected to its neighbors (agents i — 1
and 7 + 1) through a virtual linear spring with stiffness &
and initially in resting condition (with rest length ¢,.). The
virtual points are considered to be immersed in a viscous
environment characterized by the viscosity coefficient b.
Obstacles are modelled to generate a repulsive potential
that will be described later in detail.

As shown in Fig.4, a dynamic multivariable system is thus
introduced in which agent 7 is affected at any time by four
different forces:

e an elastic force generated by the spring connecting it
to the following agent 7 + 1;

e an elastic force generated by the spring connecting it
to the previous agent 7 — 1;

e a viscous friction force proportional to its velocity;

e an external force provided by the gradient of the
overall potential field generated by the obstacles.

All the agents dynamically react and modify their position
in the environment according to the resulting external

Fig. 5. Potential field described in (6).

force in each time instant. The considered system is
a passive mechanical system only composed by energy
storing elements (masses and springs) and dissipative
elements (dampers) and thus stability and convergence to
steady state position values of the agents are assured. In
particular, once the transients are expired, the action of
the springs forces all the agents to be almost equally spaced
with each other, guaranteeing the uniformity of robot
motion provided by the B-spline generator that receive
the agents’ positions as input.

3.2 Environment Description

In this study the obstacles characterizing the environment
are assumed to be convex and separated from cach other.
This choice allows to focus on the analysis of the advan-
tages of the proposed algorithm whereas more complex
environments characterized by randomly shaped obstacles
will be considered in future works. Each obstacle is mod-
elled by a repulsive potential field. The resulting potential
¢ in a generic point p = (pa, py) is given by the sum over
the 2-D plane of the potential generated by the I obstacles
present in the environment:
1
o(p) = Y Pi(p) (5)
k=0

If we assume for simplicity that the shape of obstacles is
extended to a circle circumscribing the simplex, the value
of the radial potential generated by obstacle k, with radius
r centered in o = (04, 0y), is given by

gollp — ol = 1) + v, if|p—of <r
Pr(p) = { f(p), if p—o/<r+p (6)
0, if[p—o|>r+p
3¢y + 2
£(2) = s+ aullp = of = r) = S22 (o] )2
2¢p + gop
s L(lp—o —1)* (7)

where gq is the constant slope in the interior region of the
potential, ¢y is the potential value at the obstacle’s border
and p represents the safety distance from the border, that
is chosen greater than half of the robot’s length. f(p) has
been chosen as a third degree polynomial function that
smoothly joins the linear part of the potential (see Fig. 5).
Note that these parameters are independent with respect
to the considered obstacle. In this way each obstacle
presents the same repulsive field regardless of its radius
in the region adjacent to its border. The modulus of the
gradient presents a constant value gg within the obstacle
preventing the application of possibly very large forces in



case one of the virtual agents spawns near to the obstacle’s
center and gradually reduces to zero at a radial distance
p from the border of the obstacle. Eventually each agent ¢
has the following dynamic constraint

mpi + bpi + FL — F; = =V o(p;) (8)
where
F; = k(|lpi — pi—1| — 0, )vers(p; — pi—1)
with p; = (z;,y;) the current position of the agent, V& (p;)
the gradient of the potential and vers(p) = ﬁ.

4. ALGORITHM DESCRIPTION

According to the environment characteristics and the task
to be computed, two different versions of the algorithm
have been considered. The initial study has been carried
out in a fully known environment characterized by static
obstacles. In this kind of scenario a global planner, evaluat-
ing the whole trajectory toward the final goal is defined. In
case the environment is only partially known (e.g. through
proprioceptive sensors equipped on a mobile robot) and
the environment itself is dynamically changing, a local
planner, producing runtime a trajectory with adaptive
properties is considered.

4.1 Global planner

The global planner task consists in simply reaching a
goal position G = (G, Gy) starting from a start position
S = (84, 5y) in a completely know environment. The first
step takes into account the initialization and the definition
of the n virtual agents, which are equidistantly placed in
an ordered way along the line connecting S to G. The
number of agents is clearly provided by

[ 0

where the || operator returns the closest integer. Each
agent is characterized by the same mass m. Agent 1 and n
are in this way placed at a distance J, respectively from S
and G, that can be seen as two additional static agents
with infinite mass. Once the initialization procedure is
terminated the agents start to react to the environment
and the dynamic motion starts according to (8). When the
agents converge to their steady state values, their positions
are again interpreted as via-points and the corresponding
control points are provided to the B-spline generator
that dispenses the geometric trajectory that smoothly
interpolates the agents as shown in Fig.6. It is important
to choose d, < mingeo rr where O is the set of obstacles
indexed by k and rj is the radius of obstacle k. This
is necessary to ensure that any pair of adjacent agents
are not initially located at opposite sides of any obstacle,
leading to a trajectory colliding with the obstacle itself.
One of the advantages of this method is the overcoming of
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Fig. 6. Working principle of the global planner.
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Fig. 7. The global planner avoids potential traps.

potential traps: even if it may happen that some agents will
stack in a stationary point descending the potential, at the
interpolation stage the resulting trajectory will smoothly
join the start with the goal without taking care of the local
minima (see Fig. 7)

4.2 Local adaptive planner

Let’s consider now a dynamically changing environment
and let’s suppose that the robot has a large, possibly
unknown, distance to cover. This is the case, for example,
when the stating point S is known but we have information
only of the heading direction in which the goal G lies. In
this new scenario the previous global planner can not be
considered a satisfactory solution for two main reasons:

e an uniform distribution of a great amount of agents
between S and G would be both very expensive from
a computational point of view and an unjustified
expedient since eventually the robot travels along a
trajectory which is locally defined only by the few
agents that are close to it.

e an obstacle with variable position could end up
stretching the trajectory indefinitely.

In these circumstances it is possible to considered an im-
proved version of the algorithm, called the local adaptive
planner. The main difference lies in the role of the agents.
With respect to the global planner, where n virtual agents
were placed equidistantly from S to G, now the agents
will cover only a limited portion of space starting from the
current robot position and will be updated as described
later. In this perspective the agents gain a deeper meaning
that can be abstracted as follows: since the first agents will
define locally the trajectory to be computed they have to
convoy the robot during his motion, while the last ones
are aimed to accomplish an exploration task since they
have to react responsively to the upcoming environment.
In particular the last agent on the line, from now on called
the "explorer”, will always be considered the current target
of the robot in the global planner algorithm sense. It is
placed at a defined fraction of the line (depending on the
number of agents n) connecting the starting point and the
goal and the initialization stage is completed by placing
the remaining agents, equally spaced by d,., between .S and
the explorer.

The masses of the agents are set as monotonically decreas-
ing:

m; >my, Vi<j, 1,j=1,..,n

In this way the first part of the resulting trajectory will
present less fluctuations since the agents are subjected to
slower dynamics and the smoothness of the motion of the
robot is not compromised. The last agents gain opposite
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Fig. 8. A graphical interpretation of the roles of the agents.
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Fig. 9. A graphical visualization of the update mechanism.

characteristics and in particular the explorer, which is
clearly set to have the lowest mass value, makes the last
part of the trajectory very reactive to the presence of
obstacles and very responsive to the changes in the envi-
ronment. Even if the last part of the B-spline presents fast
variations (e.g. caused by a spawned obstacle) the current
motion of the robot is not affected by them while the adap-
tive part of the trajectory is taking care of the said varia-
tions. In Fig. 8 a graphical interpretation of the dynamic
characterization of the agents in the local adaptive planner
is presented. The number of agents represents a tradeoft
between the computational burden of the algorithm and
the adaptation capability of the resulting trajectory: as n
increases, the amount of computation required increases,
while at the same time the conceptual independence be-
tween the quality of the agents (from convoying ones to
exploring ones) as described above is accentuated. In order
to reach the goal G a discrete periodic reconfiguration of
the position of the agents is needed: once the first agent
is reached it vanishes and a new agent, that will be the
new explorer, is placed toward G at a distance §, from
the old one or toward the next trajectory point in the
case the initialization is performed using a sample-base
planner. All the masses of the agents are scaled according
to the new configuration (see Fig. 9). The reconfiguration
stops when the distance of the robot from the goal is small
enough to use the global planner to end the trajectory.
On the contrary of what happens in the global planner
case, the motion of the robot does not wait for the steady
state configuration achievement of all the agents but only
(with a prescribed level of tolerance) for the assessment of
the convoying ones. During the reconfigurations the robot
keeps moving relying on the slow dynamics of the agents
close to it provided by a sufficiently high number of agents
and by the scaled mass values.

The velocity can be controlled by the online modification
of the mutual distances between agents by acting on the
rest length of the virtual springs d,. In particular by
enlarging the rest length value the velocity increases and
viceversa.

ROS
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Fig. 10. Overall conceptual scheme of the trajectory plan-
ner in ROS.

5. EXPERIMENTS

The experimental tests have been carried out in a known
environment using a Kuka Youbot that has to avoid
obstacles to reach a goal in a 2D navigation plane. All
the positions of the obstacles and the robot have been
continuously tracked using a ”Vicon” network of cameras.
The overall software infrastructure has been built using
the Robot Operating System (ROS). The node network
is shown in 10. The structure can be seen as a dual rate
system with an inner sampling period of T (corresponding
to the frequency of the nodes) and an outer one of T' (set to
be an integer multiple of T%) that provides the frequency
of the update mechanism.

5.1 FExperimental Results

The arena inside which the mobile robot is moving, defined
by a 3 x 3 m? area, is characterized by four obstacles of
different shapes and dimensions. In Fig.11 five snapshots
of the total motion of the robot during the experiment
are presented. The real image is augmented with the path
reconstruction in Rviz. In this manner it is possible to
see how the agents react to the potential fields generated
by the obstacles, visualized as a dark cylinder within
the shape of the obstacle itself. The light region on the
adjacent area up to a distance p from the border of the
obstacle represents the polynomial part of the potential
as described in Sec. 3. According to the youBot dimen-
sions and the environment’s characteristics the parameters
shown in the Table 1

In the sequence of figures it is possible to appreciate
how the exploring agents interact with the potential field
generated by the obstacles and modify their position ac-
cordingly, producing a smooth trajectory that circumnavi-
gates the area around the obstacles. The convoying agents
providing the instantaneous references for the motion are
unaffected by the modification of the trajectory caused by
the explorers. As result an overall trajectory characterized
by a constant velocity along the defined path is gener-
ated. In the tests performed over fifty different scenarios,
characterized by obstacles randomly generated but whose
potential fields are not interacting with each other, the

Table 1.
Variable  Value  Unit Variable  Value  Unit
or 0.1 [m] b 0.35 [Nm]
k 1 [N/m] | g0 -1 (N]
n 15 P 0.25 [m]




Fig. 11. Snapshots of robot motion and Rviz interface.

success rate has been of 100%. Moreover the generation of
the initial trajectory by means of a sample-based planner
has allowed to extend the result to environments in which
the interaction between the potential fields is considered.
The analysis of the generated trajectory showed that, by
taking into account the parameters values defined in 1,
the agents become stable in 1.25 seconds, on average.
This result confirms the reactiveness of the algorithm with
respect to dynamical changes in the environment.

6. CONCLUSIONS

In this paper a novel path planning algorithm based on
modification of B-spline curves is proposed. The via-points
of the B-spline curve have been treated as reactive agents
and have been modelled in a physical consistent way in
order to generate collision free paths. The experimental
results have shown a successful behaviour of the proposed
algorithm which presents low computational burden, may
provide adaptability to changing environments and can
lead to many different studies. In particular very promising
applications could be considered in the fields of human
safety in human-robot interaction scenarios and of indus-
trial warchousing handled by multi-robot networks. The
proposed approach is amenable to be used in cooperation
with other algorithms. For example it could act after a
sample based planner has already computed an initial
guess of the trajectory offline and adjust the precom-
puted path smoothly and responsively with respect to
variations in the environment. In the future the extension
of the local planner for unknown dynamical environment
reconstructed by on-board sensors will be carried out with
particular attention on non-convex and large shaped ob-
stacles. Furthermore telemanipulation-oriented works con-
sidering the control of the exploring agents by means of
an haptic device, relying on the global assessment of the
underlying trajectory, will be explored.
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